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Extraction of formulas that fit the data:
• NN and statistical regression: 

• good for discovery of patterns and relations in data
• drawback: “black-box" models

• Standard regression: 
• the functional form is given, discovery = parameter fitting

• Symbolic regression: 
• the functional form is not given but is instead composed from the data
• models are more “interpretable” and require less data

Discovery of scientifically meaningful formulas:
• Many expressions can be extracted for a given dataset, but not all are 

consistent with the known background theory
• Models that are derivable, and not merely empirically accurate, are 

appealing because they are arguably correct, predictive, and insightful

GOAL:
Discovering meaningful laws of nature in 
symbolic form from experimental data

DERIVABLE
SCIENTIFIC DISCOVERY



DERIVABLE
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IDEA: unification of explicit symbolic model extraction 
from numerical data with formal reasoning

• Verification capabilities: providing a formal proof of the 
derivability of a formula produced from the data

• When not derivable: providing measures that indicate how 
close a formula is to a derivable formula.
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Given observational data, associated with a process or phenomenon, the goal is 
to discover an interpretable, universal,  mathematical model in a symbolic form.
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System overview

INPUT: 4-tuples ⟨ B , C , D , M ⟩ 

• Background Knowledge B: domain-specific axioms (logic formulae)
• Completeness assumption: B contains all the axioms necessary to comprehensively explain the 

phenomena under consideration
• Consistency assumption: the axioms do not contradict one another

• A Hypothesis Class C:  
• Grammar (set of admissible symbolic models)
• Invariance constraints (e.g., X + Y is equivalent to Y + X) 
• Constraints on the functional form (e.g., monotonicity)

• Data D: a set of n examples
• Modeler Preferences M: a set of numerical parameters (e.g., error bounds on accuracy)



SYMBOLIC REGRESSION
Define grammar so that every meaningful mathematical expression is a sentence of a formal language 
comprising:
 Operators
 Variables
 Constants

The grammar is encoded as a set of (decision) variables and constraints 

Free-form search in the space of the sentences for ones that honors the data while minimizing expression 
complexity



Where:
• ! - error model 
• " ∈ $ - set of training datum
• % ∈ & - set of targets associated with "
• ' - set of admissible symbols
• '∗ - set of words in the language
• ( - a proper tree structure
• ) ∈ '∗	and parse " ∈ ( implies that
     s ∈ ℒ((, Σ) (belongs to the formal language)
• 5 - a measure of complexity
• 6 - numerical function
• 7 - set of invariants

SYMBOLIC REGRESSION

The optimization problem can be articulated 
at a high level as:
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4 – Constraints pre-processing

Checking which of the candidate formulas 
support a set of constraints on the     
functional form:
• Monotonicity condition
• Conditions at the limit 
• etc.

1 – Derivability

Verify a formula from a set of axioms defining 
the background theory

2 – Reasoning measures

Relative/Absolute error between a formula 
(induced from data) and the variable of interest 
which represents a derivable formula deducible 
from the axioms

3 – Counterexample generation

Generation of new points that violates the 
current candidate formula, starting from the 
axioms

REASONING CAPABILITIES



DERIVABILITY
Two types of derivability
Direct derivability: 

(C ⋀ A) → f

Existential derivability:

∃ c1 ... cn (C ⋀ A) → (f ′ ⋀ C ′)

• f is replaced by f ′ by introducing new 
existentially quantified variables for each 
numerical element in f. 

Where:
• C = constraints
• A = axioms, 
• C ∪ A = background theory
• f = the formula we wish to prove 

Formula extracted from data

f = p/(0.709 · p + 0.157)

Formula to prove – Direct derivability

(C ⋀ A) → p/(0.709 · p + 0.157)

Formula to prove – Existential derivability

∃ c1 c2 (C ⋀ A) → p/(c1 · p + c2) 

Example:



REASONING ERRORS

Distance between:
• A formula generated from 

the numerical data 

• The derivable formula that 
is implicitly defined by the 
axiom set

Pointwise
reasoning error

Generalized 
reasoning error 

Dependency 
analysis

Note: The derivable formula 
is defined by the variable of 
interest is not given explicitly, 
but only implicitly defined in 
the background theory



REASONING ERRORS

Pointwise reasoning error
• measured by the l2 or l∞ norm

(holds for other norms as well) 

• applied to the differences 
between the values of the 
numerically-derived formula 
and a derivable formula at 
the points in the dataset. 

Pointwise
reasoning error

Generalized 
reasoning error 

Dependency 
analysis



REASONING ERRORS

Generalization reasoning 
error
• Consider not only the specific 

datapoints but the interval 
where specific data points lie in

• Evaluate how much a formula 
generalizes between the data 
points

Pointwise
reasoning error

Generalized 
reasoning error 

Dependency 
analysis



REASONING ERRORS

Variable dependence
Extension of the intervals 
beyond the order of magnitude 
of the data points in the dataset. 
• Check if a formula generalizes 

even outside the space 
defined by the dataset 

Done by:
• increasing (or diminishing) the 

interval end (or start) point by 
one order of magnitude for a 
variable at a time.

Pointwise
reasoning error

Generalized 
reasoning error 

Dependency 
analysis



SHOW CASES

Challenges:
• Real data (noise)
• Few data points (~10 points)
• Kepler: The masses involved are of very different magnitudes. 
• Langmuir: Background theory contains material-dependent coefficients
• Einstein: Different background theories: Newtonian and relativistic

Kepler’s third law of 
planetary motion

Langmuir’s 
adsorption equation

Einstein’s time-
dilation formula 



Symbolic regression

BARON as MINLP solver 
• Supported operators: 

• +, −, ×, /, exp, log
• Supported L-tree depth = 4 

(~7 parsing tree)

Reasoning

KeYmaera as reasoning tool
• ATP for hybrid systems, which combines 

different types of reasoning: deductive, 
real-algebraic, and computer-algebraic 
reasoning. 

• has an underlying CAD system

Mathematica for certain types of analysis of 
symbolic expressions 
• e.g. constraints checking

EXPERIMENTS SETUP



Kepler's law captures the relationship between the distance between two 
bodies and their orbital periods

§ p is the orbital period;
§ G is the gravitational constant; 
§ m1 and m2 are the masses of the two bodies 

(e.g., the sun and a planet in the solar system)

KEPLER’S THIRD LAW OF PLANETARY MOTION
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KEPLER’S THIRD LAW OF PLANETARY MOTION

Solar system

Exoplanets

Binary stars
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Background theory

K1. center of mass definition

K2. distance between bodies

K3. gravitational force

K4. centrifugal force 

K5. force balance 

K6. period definition

K7. non-negativity constraints

KEPLER’S THIRD LAW OF PLANETARY MOTION



KEPLER’S THIRD LAW OF PLANETARY MOTION



LANGMUIR’S ADSORPTION EQUATION
The Langmuir adsorption equation describes a 
chemical process in which gas molecules contact a 
surface, and relates the loading on the surface to 
the pressure of the gas.

§ p is the pressure of the gas
§ q is loading q on the surface
§ qmax is the maximum loading 
§ Ka is the adsorption strength

Gas pressure
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LANGMUIR’S ADSORPTION EQUATION

Background theory CONSTRAINTS



LANGMUIR’S ADSORPTION EQUATION

• f2 and g2 → provable
• g5  g7 → satisfy the 

constraints



Relativistic time dilation formula computes:
The frequency f for a clock moving at speed v is related to the 
frequency f0 of a stationary clock by the formula 

Stationary 
light clock

Moving 
light clock

• Einstein’s theory of relativity: the speed of light is constant
• Two observers in relative motion to each other will experience time differently and observe different 

clock frequencies

RELATIVISTIC TIME DILATION
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RELATIVISTIC TIME DILATION

Newtonian axiomsRelativistic axioms

2 Background theories

AI-Descartes can identify which theory 
explains the phenomenon better



RELATIVISTIC TIME DILATION



COMPARISON WITH SOTA SYSTEMS
• AI-Feynman: deep learning based symbolic regression algorithm.

• TuringBot: simulated annealing method to find expressions that fit the input data. 

• PySR: based on regularized evolution, simulated annealing, and gradient-free optimization.

• Bayesian Machine Scientist (BMS): Markov chain Monte Carlo based method exploiting a 
prior learned from a large empirical corpus of mathematical expressions. 

AI-Descartes AI-Feynman PySR BMS TuringBot

Accuracy 0.60 0.41 0.49 0.48 -

Accuracy (max 2 var) 0.87 0.80 0.73 0.80 0.80

Accuracy on the Feynman synthetic dataset



CONCLUSION & FUTURE/ONGOING WORK

Strengths:
• Few data points / Real data
• Logical reasoning to distinguish the correct formula from 

a set of plausible formulas with similar error on the data

Limitations:
• Limitation of the tools
• Scalability to bigger formulas
• Rely on correctness & completeness of background theory

Main challenges:
• We need more real-data datasets (only synthetic 

datasets with non-realistic amount/type of noise)
• We need more numerical datasets with associated 

background theory 

https://github.com/IBM/AI-Descartes https://ai-descartes.github.io
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