DERIVABLE SCIENTIFIC DISCOVERY

 CORNELIO CRISTINA - SAMSUNG AIIN COLLABORATION WITH IBM RESEARCH: SANJFEB DASH, VERNON AUSTEL, TYLER R. JOSEPHSON, JOAO GONCALVES, KENNETH CLARKSON, NIMROD MEGIDDO, BACHIR EL KHADIR LIOR HORESH COLLOQUIUM PR[AI]RIE - OCTOBER 19, 2023

Discovering meaningful laws of nature in symbolic form from experimental data

DERIVABLE
 SCIENTIFIC DISCOVERY

Extraction of formulas that fit the data:

- NN and statistical regression:
- good for discovery of patterns and relations in data
- drawback: "black-box" models
- Standard regression:
- the functional form is given, discovery = parameter fitting
- Symbolic regression:
- the functional form is not given but is instead composed from the data
- models are more "interpretable" and require less data

Discovery of scientifically meaningful formulas:

- Many expressions can be extracted for a given dataset, but not all are consistent with the known background theory
- Models that are derivable, and not merely empirically accurate, are appealing because they are arguably correct, predictive, and insightful

DERIVABLE SCIENTIFIC DISCOVERY

IDEA: unification of explicit symbolic model extraction from numerical data with formal reasoning

- Verification capabilities: providing a formal proof of the derivability of a formula produced from the data
- When not derivable: providing measures that indicate how close a formula is to a derivable formula.

SCIENTIFIC METHODS

System overview

Given observational data, associated with a process or phenomenon, the goal is to discover an interpretable, universal, mathematical model in a symbolic form.

System overview

INPUT: 4-tuples 〈B, C, D, M 〉

- Background Knowledge B: domain-specific axioms (logic formulae)
- Completeness assumption: B contains all the axioms necessary to comprehensively explain the phenomena under consideration
- Consistency assumption: the axioms do not contradict one another
- A Hypothesis Class C:
- Grammar (set of admissible symbolic models)
- Invariance constraints (e.g., $X+Y$ is equivalent to $Y+X$)
- Constraints on the functional form (e.g., monotonicity)
- Data D: a set of n examples
- Modeler Preferences M: a set of numerical parameters (e.g., error bounds on accuracy)

SYMBOLIC REGRESSION

Define grammar so that every meaningful mathematical expression is a sentence of a formall language comprising:

- Operators
- Variables
- Constants

The grammar is encoded as a set of (decision) variables and constraints

Free-form search in the space of the sentences for ones that honors the data while minimizing expression complexity

SYMBOLIC REGRESSION

The optimization problem can be articulated at a high level as:

Where:

- D - error model
- $x \in \mathcal{X}$ - set of training datum
- $y \in \mathcal{Y}$ - set of targets associated with x
- Σ - set of admissible symbols
- Σ^{*} - set of words in the language
- \mathcal{J} - a proper tree structure
- $s \in \Sigma^{*}$ and parse $(x) \in \mathcal{T}$ implies that
$s \in \mathcal{L}(\mathcal{T}, \Sigma)$ (belongs to the formal language)
- C - a measure of complexity
- \mathcal{N} - numerical function
- I - set of invariants

REASONING CAPABILITIES

1 - Derivability
 Verify a formula from a set of axioms defining the background theory

2 - Reasoning measures

Relative/Absolute error between a formula (induced from data) and the variable of interest which represents a derivable formula deducible from the axioms

3 - Counterexample generation

Generation of new points that violates the current candidate formula, starting from the axioms

4 - Constraints pre-processing
Checking which of the candidate formulas support a set of constraints on the functional form:

- Monotonicity condition
- Conditions at the limit
- etc.

Two types of derivability

DERIVABILITY

Direct derivability:

$(C \wedge A) \rightarrow f$

Existential derivability:

$$
\exists c_{1} \ldots c_{n}(C \wedge A) \rightarrow\left(f^{\prime} \wedge C^{\prime}\right)
$$

- f is replaced by f ' by introducing new existentially quantified variables for each numerical element in f.

Where:

- $C=$ constraints
- $\mathrm{A}=$ axioms,
- $C \cup A=$ background theory
- $\mathrm{f}=$ the formula we wish to prove

REASONING ERRORS

Pointwise reasoning error

Generalized reasoning error

Dependency analysis

Distance between:

- A formula generated from the numerical data
- The derivable formula that is implicitly defined by the axiom set

$$
\begin{aligned}
& \text { Note: The derivable formula } \\
& \text { is defined by the variable of } \\
& \text { interest is not given explicitly, } \\
& \text { but only implicitly defined in } \\
& \text { the background theory }
\end{aligned}
$$

REASONING ERRORS

Pointwise reasoning error

Generalized reasoning error

Dependency
analysis

Pointwise reasoning error

- measured by the I_{2} or I_{∞} norm (holds for other norms as well)
- applied to the differences between the values of the numerically-derived formula and a derivable formula at the points in the dataset.
$\beta_{2}^{r}=\sqrt{\sum_{i=1}^{m}\left(\frac{f\left(\mathbf{X}^{i}\right)-f_{\mathscr{B}}\left(\mathbf{X}^{i}\right)}{f_{\mathscr{B}}\left(\mathbf{X}^{i}\right)}\right)^{2}}$

REASONING ERRORS

Pointwise

 reasoning errorGeneralized reasoning error

Dependency
analysis

Generalization reasoning

error

- Consider not only the specific datapoints but the interval where specific data points lie in
- Evaluate how much a formula generalizes between the data points

$$
\beta_{\infty}^{r}=\max _{1 \leq i \leq m}\left\{\frac{\left|f\left(\mathbf{X}^{i}\right)-f_{\mathscr{B}}\left(\mathbf{X}^{i}\right)\right|}{\left|f_{\mathscr{B}}\left(\mathbf{X}^{i}\right)\right|}\right\}
$$

REASONING ERRORS

```
Pointwise reasoning error
```


Generalized

 reasoning error
Dependency analysis

Variable dependence

Extension of the intervals beyond the order of magnitude of the data points in the dataset.

- Check if a formula generalizes even outside the space defined by the dataset
Done by:
- increasing (or diminishing) the interval end (or start) point by one order of magnitude for a variable at a time.

SHOW CASES

Kepler's third law of planetary motion

Langmuir's adsorption equation

Einstein's timedilation formula

Challenges:

- Real data (noise)
- Few data points (~10 points)
- Kepler: The masses involved are of very different magnitudes.
- Langmuir: Background theory contains material-dependent coefficients
- Einstein: Different background theories: Newtonian and relativistic

EXPERIMENTS SETUP

Symbolic regression

BARON as MINLP solver

- Supported operators:
-,,$+- \times, /$, exp, log
- Supported L-tree depth $=4$
(~ 7 parsing tree)

Reasoning

KeYmaera as reasoning tool

- ATP for hybrid systems, which combines different types of reasoning: deductive, real-algebraic, and computer-algebraic reasoning.
- has an underlying CAD system

Mathematica for certain types of analysis of symbolic expressions

- e.g. constraints checking

KEPLER'S THIRD LAW OF PLANETARY MOTION

Kepler's law captures the relationship between the distance between two bodies and their orbital periods

$$
p=\sqrt{\frac{4 \pi^{2} d^{3}}{G\left(m_{1}+m_{2}\right)}}
$$

- p is the orbital period;
- G is the gravitational constant;
- m_{1} and m_{2} are the masses of the two bodies
(e.g., the sun and a planet in the solar system)

KEPLER'S THIRD LAW OF PLANETARY MOTION

Solar system	$\sqrt{0.1319 d^{3}}$	Reasoning
	$\left(0.03765 d^{3}+d^{2}\right) /(2+d)$	
	$\sqrt{0.1316\left(d^{3}+d\right)}$	
Exoplanets	$\sqrt{0.1319 d^{3} / m_{1}}$	
	$\sqrt{m_{1}^{2} m_{2}^{3} / d+0.1319 d^{3} / m_{1}}$	
	$\sqrt{\left(1-0.7362 m_{1}\right) d^{3} / 2}$	
$\{\xi$ Binary stars	$1 /\left(d^{2} m_{1}^{2}\right)+1 /\left(d m_{2}^{2}\right)-m_{1}^{3} m_{2}^{2}+\sqrt{0.4787 d^{3} / m_{2}+d^{2} m_{2}^{2}}$	
	$\left(\sqrt{d^{3}}+m_{1}^{3} m_{2} / \sqrt{d}\right) / \sqrt{m_{1}+m_{2}}$	
	$\sqrt{d^{3} /\left(0.9967 m_{1}+m_{2}\right)}$	

KEPLER'S THIRD LAW OF PLANETARY MOTION

Background theory

K1. center of mass definition
K2. distance between bodies

K3. gravitational force
K4. centrifugal force
K5. force balance
K6. period definition
K7. non-negativity constraints

K1. $m_{1} * d_{1}=m_{2} * d_{2}$
$\mathrm{K} 2 . d=d_{1}+d_{2}$
K3. $F_{g}=\frac{G m_{1} m_{2}}{d^{2}}$
K4. $F_{c}=m_{2} d_{2} w^{2}$
K5. $F_{g}=F_{c}$
K6. $p=\frac{2 \pi}{w}$
K7. $m_{1}>0, m_{2}>0, p>0, d_{1}>0, d_{2}>0$.

KEPLER'S THIRD LAW OF PLanETARY MOTION

1	2	3	4	5	6	7	8	9	10
Dataset	Candidate formula$p=$	numerical error		point. reas. err.		gen. reas. error $\beta_{\infty, S}^{r}$	dependencies		
		ε_{2}^{r}	ε_{∞}^{r}	β_{2}^{r}	β_{∞}^{r}		m_{1}	m_{2}	d
solar	$\sqrt{0.1319 \cdot d^{3}}$. 01291	. 006412	. 0146	. 0052	. 0052	0	0	1
	$\sqrt{0.1316 *\left(d^{3}+d\right)}$	1.9348	1.7498	1.9385	1.7533	1.7559	0	0	0
	$\left(0.03765 d^{3}+d^{2}\right) /(2+d)$. 3102	. 2766	. 3095	. 2758	. 2758	0	0	0
exoplanet	$\sqrt{0.1319 d^{3} / m_{1}}$. 08446	. 08192	. 02310	. 0052	. 0052	0	0	1
	$\sqrt{m_{1}^{2} m_{2}^{3} / d+0.1319 d^{3} / m_{1}}$. 1988	. 1636	. 1320	. 1097	>550	0	0	0
	$\sqrt{\left(1-.7362 m_{1}\right) d^{3} / 2}$	1.2246	. 4697	1.2418	. 4686	. 4686	0	0	1
binary stars	$\begin{aligned} & 1 /\left(d^{2} m_{1}^{2}\right)+1 /\left(d m_{2}^{2}\right)-m_{1}^{3} m_{2}^{2}+ \\ & +\sqrt{.4787 d^{3} / m_{2}+d^{2} m_{2}^{2}} \end{aligned}$. 002291	. 001467	. 0059	. 0050	timeout	0	0	0
	$\left(\sqrt{d^{3}}+m_{1}^{3} m_{2} / \sqrt{d}\right) / \sqrt{m_{1}+m_{2}}$. 003221	. 003071	. 0038	. 0031	timeout	0	0	0
	$\sqrt{d^{3} /\left(0.9967 m_{1}+m_{2}\right)}$. 005815	. 005337	. 0014	. 0008	. 0020	1	1	1

LANGMUIR'S ADSORPTION EQUATION

The Langmuir adsorption equation describes a chemical process in which gas molecules contact a surface, and relates the loading on the surface to the pressure of the gas.

$$
\frac{q}{q_{\max }}=\frac{K_{a} \cdot p}{1+K a \cdot p}
$$

- p is the pressure of the gas

LANGMUIR'S ADSORPTION EQUATION

Background theory

L1. Site balance:

L2. Adsorption rate model:

$$
S_{0}=S+S_{\mathrm{a}}
$$

$$
r_{\mathrm{ads}}=k_{\mathrm{ads}} \cdot p \cdot S
$$

L3. Desorption rate model:
L4. Equilibrium assumption:
L5. Mass balance on q
$r_{\text {des }}=k_{\text {des }} \cdot S_{\mathrm{a}}$
$r_{\mathrm{ads}}=r_{\text {des }}$
$q=S_{\mathrm{a}}$
\mathscr{K} constraints
C1. $f(0)=0$
C2. $(\forall p>0)(f(p)>0)$
C3. $(\forall p>0)\left(f^{\prime}(p) \geq 0\right)$
C4. $0<\lim _{p \rightarrow 0} f^{\prime}(p)<\infty$
C5. $0<\lim _{p \rightarrow \infty} f(p)<\infty$

LANGMUIR'S ADSORPTION EQUATION

Isobutane in MFI zeolite at 277 K

Candidate formula $q=$
$f_{1}:\left(p^{2}+2 p-1\right) /\left(.00888 p^{2}+.118 p\right)$
$f_{2}: p /(.00927 p+.0759)^{*}$
$f_{3}:\left(p^{2}-10.5 p-15.\right) /\left(.00892 p^{2}-1.23\right)$
$f_{4}:(8.86 p+13.9) /(.0787 p+1)$
$f_{5}: p^{2} /\left(.00895 p^{2}+.0934 p-.0860\right)$
$f_{6}:\left(p^{2}+p\right) /\left(.00890 p^{2}+.106 p-.0311\right)$
$f_{7}:\left(112 p^{2}-p\right) /\left(p^{2}+10.4 p-9.66\right)$
$g_{1}:(p+3) /(.584 p+4.01)$
$g_{2}: \quad p /(.709 p+.157)$
$g_{3}:\left(.0298 p^{2}+1\right) /\left(.0185 p^{2}+1.16\right)-.000905 / p^{2}$
$g_{4}: \quad 1 /\left(p^{2}+1\right)+(2.53 p-1) /(1.54 p+2.77)$
$g_{5}:\left(1.74 p^{2}+7.61 p\right) /\left(p^{2}+9.29 p+0.129\right)$
$g_{6}:\left(.226 p^{2}+.762 p-7.62 * 10^{-4}\right) /\left(.131 p^{2}+p\right)$
$g_{7}:\left(4.78 p^{2}+26.6 p\right) /\left(2.71 p^{2}+30.4 p+1.\right)$

- f_{2} and $\mathrm{g}_{2} \rightarrow$ provable
- $\mathrm{g}_{5} \mathrm{~g}_{7} \rightarrow$ satisfy the constraints

RELATIVISTIC TIME DILATION

- Einstein's theory of relativity: the speed of light is constant
- Two observers in relative motion to each other will experience time differently and observe different clock frequencies

$$
\frac{f-f_{0}}{f_{0}}=\sqrt{1-\frac{v^{2}}{c^{2}}}-1
$$

Relativistic time dilation formula computes:
The frequency f for a clock moving at speed v is related to the frequency f_{0} of a stationary clock by the formula

RELATIVISTIC TIME DILATION

2 Background theories

RELATIVISTIC TIME DILATION

Candidate	Numerical Error		Numerical Error		S s.t. Absolute	S s.t. Relative
formula	Absolute		Relative		Gen. Reas. Error	Gen. Reas. Error
$y=$	ε_{2}^{a}	ε_{∞}^{a}	ε_{2}^{r}	ε_{∞}^{r}	$\beta_{\infty, S}^{a} \leq 1$	$\beta_{\infty, S}^{r} \leq 0.02$
$-0.00563 v^{2}$.3822	.3067	1.081	.001824	$37 \leq v \leq 115$	$37 \leq v \leq 10^{8}$
$\frac{v}{1+0.00689 v}-v$.3152	.2097	1.012	.006927	$37 \leq v \leq 49$	$37 \leq v \leq 38$
$-0.00537 \frac{v^{2} \sqrt{v+v^{2}}}{(v-1)}$.3027	.2299	1.254	.002147	$37 \leq v \leq 98$	$37 \leq v \leq 109$
$-0.00545 \frac{v^{4}}{\sqrt{v^{2}+v^{-2}(v-1)}}$.3238	.2531	1.131	.0009792	$37 \leq v \leq 126$	$37 \leq v \leq 10^{7}$

COMPARISON WITH SOTA SYSTEMS

- Al-Feynman: deep learning based symbolic regression algorithm.
- TuringBot: simulated annealing method to find expressions that fit the input data.
- PySR: based on regularized evolution, simulated annealing, and gradient-free optimization.
- Bayesian Machine Scientist (BMS): Markov chain Monte Carlo based method exploiting a prior learned from a large empirical corpus of mathematical expressions.

	Al-Descartes	All-Feynman	PySR	BMS	TuringBot
Accuracy	$\mathbf{0 . 6 0}$	0.41	0.49	0.48	-
Accuracy (max 2 var)	$\mathbf{0 . 8 7}$	0.80	0.73	0.80	0.80

CONCLUSION \& FUTURE/ONGOING WORK

Strengths:

- Few data points / Real data
- Logical reasoning to distinguish the correct formula from a set of plausible formulas with similar error on the data

Limitations:

- Limitation of the tools
- Scalability to bigger formulas
- Rely on correctness \& completeness of background theory

Main challenges:

- We need more real-data datasets (only synthetic datasets with non-realistic amount/type of noise)
- We need more numerical datasets with associated background theory

Article

Combining data and theory for derivable

 scientific discovery with AI-Descartes
https://github.com/IBM/AI-Descartes

Papers:

- Al Descartes: Combining Data and Theory for Derivable Scientific Discovery, Nature Communications, C. Cornelio, S. Dash, V. Austel, T. R. Josephson, J. Goncalves, K. Clarkson, N. Megiddo, B. El Khadir, and L. Horesh.
- Symbolic Regression using Mixed-Integer Nonlinear Optimization, V. Austel, C. Cornelio, S. Dash, J. Gonçalves, L. Horesh, T. Josephson, N. Megiddo.
- Bayesian Experimental Design for Symbolic Discovery, K. Clarkson, C. Cornelio, S. Dash, J. Gonçalves, L. Horesh, N. Megiddo.
[Under submission] Al-Hilbert

Patents:

- Generative Reasoning for Symbolic Discovery, C. Cornelio, L. Horesh, V. Pestun, R. Yan.
- Symbolic Model Discovery based on a combination of Numerical Learning Methods and Reasoning, C. Cornelio, L. Horesh, A. Fokoue-Nkoutche, S. Dash.
- Experimental Design for Symbolic Model Discovery, L. Horesh, K. Clarkson, C. Cornelio, S. Magliacane.
- Background Theory-Based Method for Refinement and Evaluation of Functional Models Extracted from Numerical Data, Lior Horesh, C. Cornelio, Bachir EI Khadir, Sanjeeb Dash, Joao P. Goncalves, Kenneth Lee Clarkson
- Logical and Statistical Composite Models, L. Horesh, B. El Kadir, S. Dash, K. Clarkson, C. Cornelio
- Symbolic Model Discovery Rectification, L. Horesh, C. Cornelio, S. Dash, J.P. Goncalves, K. L. Clarkson, N. Megiddo, V. Austel, B. El Khadir

