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About models

www.bloomberg.com/news/features/2020-02-03

What is the carbon footprint of learning with insanely large neural networks ?

Are we blowing up our carbon quota ? Would we like to have one ?

.



Information Geometry of Independent Component Analysis
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Independent Component Analysis

.



Multi-channel time series: a biomedical example

8 ECG electrodes located on the thorax and the abdomen of a pregant woman.

Looking for linear decompositions: Data = Mixing matrix × Sources.

Data Credits: Daisy database



Principal component analysis

=



95 -51 -33 8 2 0 2 2

87 53 16 6 -2 -5 4 4

94 17 14 0 11 6 1 1

-9 105 -28 -5 1 0 0 0

97 26 0 5 0 -1 -9 -9

89 7 1 0 -11 8 0 0

97 -6 1 -4 -1 -4 1 1

92 -32 -3 -15 0 -1 0 0



×

• Orthogonal mixture, uncorrelated components :

1

T

∑
t

yi(t)yj(t) = 0 for i 6= j

• Decorrelation is weak (always posible), orthogonality is implausible.



Independent component analysis

=



98 60 -71 5 -34 17 3 3

93 114 37 0 10 5 6 6

101 99 -4 0 13 6 6 6

-17 47 79 33 -19 -13 -1 -1

106 102 7 0 -10 4 10 10

110 71 -8 0 -1 1 0 0

107 82 -22 0 0 7 17 17

112 42 -43 0 -1 11 20 20



×

• Linear decomposition in “the most independent sources”.

• Blind: only independence is at work, but we must go beyond decorrelation.

• Independence is statistically very strong but often physically plausible.

• Weak assumptions −→ wide applicability

• How to do it ? Principles ? Efficiency ? Robustness ?



How to do it ? Add constraints ?

For all pairs i 6= j, replace the n(n− 1)/2 sample decorrelation conditions

Ĉov(yi, yj) = 0

by something more constraining/less symmetric like the n(n− 1) conditions

Ĉov(ψi(yi), φj(yj)) = 0

for well chosen (?) non-linear functions ψi(), φi().

That would mimick the property that, for two independent variables, U and

V , and any two functions f and g, one has

Cov(f(U), g(V )) = 0

Jutten & Hérault (1991) designed the first adaptive component separation

algorithm based on that property and ‘some’ non linear functions.



Gaussianity makes you blind (or one-eyed)

Mixing two Gaussian (top row) or uniform(bottom) random variables

with the identity (left), a rotation (center), a generic transform (right):

Rotation is invisible unless the model and the data are non Gaussian.



Mixing and unmixing independent non Gaussian variables

We observe X = AS, a mixture of independent variables in vector S

S - A -X - B - Y

• Q: If Y = BX has independent entries, do we have BA = I and Y = S?

A: Yes, essentially, if at most one Gaussian entry in S [Darmois ’53, Comon ’92].

That is: Mixing induces dependence; restoring independence unmixes.

• Q: If mixing gaussianizes, does degaussianizing unmix ?

A: yes, locally: If B is a separating matrix then (without any CLT)

G(Yi + αYj) = G(Yi)−
1

2

α2σ2
j

σ2
i

· κi + o

σ2
j

σ2
i


for any ‘good’ (cf infra) measure G() of non-Gaussianity.

The scalar κi is positive, and strictly so for non Gaussian Yi.

.



Independent (?) components of natural scenes

16× 16 patches from natural images represented as linear combinations
of “atoms” from a visual dictionary learned from data.

Looking for sparse (B. Olshausen) or
for independent (Bell & Sejnowski) components in ‘natural images’.



Sparsity is one style of non Gaussianity

Electro-oculogram (Data courtesy I. Gorodnitsky, UCSD.)

Left: 10 electrodes located around the eyes: saccades and blinks.

Right: the linear combinations with extremal kurtosis:

kurtosis(Y ) = E(Y − EY )4/E2(Y − EY )2 − 3 Y =
10∑
i=1

wiXi

Green: maximal kurtosis k = 24.0; Red: minimal kurtosis k = −1.43.

.



How to do it, practically ?

• Ignore time/space structure but use non Gaussianity . . .

– Minimize dependence between recovered sources . . .

– . . . as measured by mutual information, why ? hard !

– . . . or approximated using high order cumulants, clumsy ?

– or find the most non Gaussian sources, why ? how ?

– or find sources uncorrelated through non linear functions:

e.g Cov
(
φi(yi), ψj(yj)

)
= 0 for i 6= j. Which functions φi, ψj ?

• . . . or assume Gaussianity but use temporal/spatial structure, such as

– . . . correlations, or spectral diversity,

– . . . or non stationarity / inhomogeneities

But how to make sense of all that ? How to do it properly ? Likelihood!



.

Information geometry (a tiny bit, really)

.



A familiar statistical manifold

Univariate Gaussian with free mean and standard deviation.

.



Kullback-Leibler divergence

• Kullback-Leibler divergence from a distribution P to a distribution Q:

K [P |Q] = EP log
P (x)

Q(x)
=
∫
P (x) log

P (x)

Q(x)
dx

• It is strictly positive unless P and Q agree P -almost everywhere.

• It is not symmetric: in general, K [P |Q] 6= K [Q |P ]

• It is invariant: under any invertible transform f(·),

K [PX |PY ] = K
[
Pf(X) |Pf(Y )

]

.



Why Kullback ?

A parametric model p(x; θ) for the distribution of a random variable X ∼ p∗(x).

The likelihood loss based on n independent samples:

L̂(θ) =
1

n

∑
i

− log p(xi; θ)

can be seen as an estimate of the expected loss

E L̂(θ) = −
∫
p∗(x) log p(x; θ) = K [p∗(x) | p(x; θ)] +H(p∗)

with H(p∗) independent of the model.

Maximum likelihood =
Kullback matching =
Kullback projection

p∗(x)

p(x; θ̂ML)
p(x; θ)

M = parametric model

Data/model asymmetry



Exponential families of distributions

The exponential segment between 2 distributions with densities p(x) and q(x):

log r(x; θ) = (1− θ) log p(x) + θ log q(x)− Z(θ), θ ∈ [0, 1]

or

r(x; θ) = p(x)
eθs(x)

Z(θ)
s(x) = log

q(x)

p(x)

An exponential family contains the exponential segment

between any two of its members.

Many statistical models are exponential.

They enjoy very nice properties, such as sufficient statistics, convexity, . . .

Stupendous geometrical behavior.



The Pythagorean theorem of information geometry

The Kullback divergence may not be a distance,
it still has its own private Pythagoras theorem.

A picture in
distribution space

P

Q
R

E

• E: an exponential family of distributions.

• Q: the unique minimizer in E of K [P | ·]. It is a projection of P onto E.

• Then, for any other distribution R of E

K [P |R] = K [P |Q] +K [Q |R]

The Kullback divergence behaves here as a squared Euclidean distance.

Exponential families are, somehow, (Kullback)-flat.



A special case: Gaussianity and lack thereof

The Gaussian distributions of an n-vector
with arbitrary mean and covariance matrix form an exponential family.

The Kullback projection of PY onto it simply is N (EY,CovY ).

Non Gaussianity G(Y ) of a random vector Y defined as
the Kullback divergence from PY to the Gaussian manifold.

.



.

Information geometry of ICA

.



The basic ICA model

• An n× T data set X = {xi(t) | 1 ≤ i ≤ n, 1 ≤ t ≤ T} modelled as

X = AS with an n× T source matrix of independent rows.

X = A ×
· · · S1 · · ·

...
· · · Sn · · ·

For now, we ignore any time/space structure (dependence within a row) and

focus on the dependence between rows.

We saw that, assuming independence of the components,

non Gaussianity is enough for an (essentially) unique blind recovery.

In need of statistical guidance, we turn to the likelihood for X = AS, S ∼ PS:

P (X|A) =
1

|detA|T
PS(A−1X) PS =

∏
i

PSi



ICA likelihood and Kullback matching

The distribution of X = AS is specified by matrix A and PS =
∏
i PSi:

−E logP (X|A)
c

= K [PX |PAS] = K
[
PA−1X |PS

]
= K [PY |PS]

Hence, the likeliest A is the one making PY the closest to PS =
∏
i PSi.

PX - A−1 - PY
K≈ PS =

∏
i PSi

The ICA parameters:

1. The parameter of interest, the mixing matrix A, lives in the multiplicative
group GL(n).

Theory of equivariant estimation in a group (big impact on performance
and algorithms, if you pay attention).

Data X and mixing A enter the likelihood only through Y = A−1X.

2. Nuisance parameters: the n source distributions. Hard to estimate, but do
we really need it? Not too much of a problem, thanks to orthogonality.

.



Some statistical manifolds of ICA

Mixing

Changing sources

Product manifold
Yi = fi(Si)

System manifold
Y = CS

Scale manifold
Y = DS

Y = S

• Y = S: the distribution of a vector S with independent entries. Move from there.

• The system manifold: distributions of Y = CS = A−1AtrueS for all invertible matrices A.

• The product manifold: distort the marginals of S, retaining independence.

• The scale manifold: change only the scales of the entries of S.

→ Blind identifiabilty = essential uniqueness of ICA =
system manifold intersects product manifold along scale manifold.

.



Nice orthogonal nuisances

Our likelihood wants to solve minAK [PY |PS] for Y = A−1X

but can we do it without knowing the right target? Bias due to PS 6= P true
S ?

For a small transform Y = eES, K [PY |PS] = L(E) + 1
2Q(E) + o(‖E‖2) with

a linear term L(E) = 0 and

a quadratic form Q(E), postive if PS “on the right side of the Gaussian”.



Non Gaussianity, sparsity and bad luck

An example of bad guess.

True distribution Hypothesized distribution Estimated distribution

The result is not only wrong; it’s maximally wrong!



Likelihood and mutual information

• Maximizing the ICA likelihood amounts to minimizing K [PY |PS].

• The target source distribution PS is usually unknown except for PS =
∏
i PSi.

PY

∏
i PYi

PS =
∏
i PSi

Product manifold

Independent entries

K [PY |PS] = K
[
PY |

∏
i PYi

]
+K

[∏
i PYi |

∏
i PSi

]
= I(Y ) +

∑
iK

[
PYi |PSi

]
= dependence + sum of marginal mismatches

The likelihood says to measure dependence by the mutual information:

I(Y )
def
= K

[
PY |

∏
i PYi

]
Major problem: mutual information is very difficult to estimate.

.



Geometry of non Gaussian dependence

SG=0.029

I=0.158

G=0.103

C=0.084

H=0.187

some 2D density

Gaussian approx.

Product approx.Gauss. prod. approx.

Y ∼ P (Y1, Y2)

Y P ∼ P (Y1)P (Y2)

Y G ∼ N (Cov(Y ))

Y PG ∼ N (diagCov(Y ))

Two familiar statistical approximations can be seen as projections:

Oh, let’s assume it’s Gaussian. . .

Ho, let’s assume they’re independent. . .



Geometry of non Gaussian dependence

SG=0.029

I=0.158

G=0.103

C=0.084

H=0.187

some 2D density

Gaussian approx.

Product approx.Gauss. prod. approx.

Y ∼ P (Y1, Y2)

Y P ∼ P (Y1)P (Y2)

Y G ∼ N (Cov(Y ))

Y PG ∼ N (diagCov(Y ))

C(Y )
def
= K

[
Y G |Y PG

]

G(Y )
def
= K

[
Y |Y G

]

I(Y )
def
= K

[
Y |Y P

]

Orthogonal projections → two right triangles → two Pythagorean theorems



Dependence and non Gaussianity

• Non Gaussianity. Define the non Gaussianity G(Y ) of Y as

G(Y ) = K [PY | N (RY )]

i.e. how much the best Gaussian approx. fails to mimic the distrib. of Y .

• The correlation C(Y ) of Y

C(Y ) = K [N (RY ) | N (diagRY )] =
1

2
log

det diagRY
detRY

i.e. how much the covariance matrix RY of Y fails to be diagonal.

• All these are (geometrically) connected by

I(Y ) +
∑
i

G(Yi) = C(Y ) +G(Y )

• Under linear transforms, G(Y ) is constant. The mutual information then is

I(Y ) = C(Y )−
∑
i

G(Yi) + cst

.



Dependence and non Gaussianity (cont.)

Repeat: Under linear transforms, making the entries of Y as independent as

possible (min I(Y )) is identical to making (as much as possible) Y uncorrelated

and each of its entries non Gaussian.

The relation I(Y ) = C(Y )−
∑
iG(Yi) +G(Y ) also reads

Complicated = Simple - Simples + Complicated constant

Note. Some ICA methods enforce decorrelation C(Y ) = 0.

Not unreasonable, but this is not what the likelihood tells us to do.

One is left with a pure degaussianization objective.



Other geometries: three points of view on a time series.

A sequence

Marginal probability density Spectral energy density Temporal energy density

Same marginal Same spectrum Same variance profile

A random (?!) sequence

Its ’marginal distribution’ Its ‘spectrum’ Its ‘variance’ profile

Non Gaussian i.i.id Gaussian stationary Modulated Gaussian i.i.d.

Project data onto simple Gaussian models for time series,

such as stationary but colored, or white but non stationary, where. . .

mutual information is a joint diagonality criterion of covariance matrices.

.



Conclusion

Three applications of the Pythagorean theorem do not cover it all.

Not covered:

1. Equivariance, Lie group, relative gradient,

2. Asymptotic analysis, stability, Fisher efficiency,

3. Extended models:

noise, convolution, under/over determination, source adaptivity,

large scale problems, high accurarcy.

4. Algorithms


